
Hans Admiraal, 2007 - 2014 1 www.admiraalit.nl

The UML aspect of RUP stretches across the disciplines. A coherent

set of models is essential for a team to successfully collaborate, but

RUP itself does not provide a clear picture. This white paper fills the

gap and does not hesitate to criticize the method. It has been updated

for the latest version of RUP, also including the Service Model and the

business models.

Which UML models should we

make?
An approach based on the Rational Unified Process

Did you ever follow the rules of the Rational Unified Process (RUP) in using UML? “Well, I tried!” is

a commonly heard answer to that question. I’ve tried it myself a number of times and yes, I failed.

Following RUP blindly simply doesn’t work, but fortunately, you don’t have to say good-bye to the

process altogether. Let me help you by pointing out some of the pitfalls and first of all, by

providing an overview of the various models in RUP.

Models in RUP

Figure 1 shows an overview of the models

specified by RUP. For each project, it has

to be decided which of those models add

sufficient value, although RUP

recommends at least the Use Case Model

and the Design Model.

Figure 1 is not a picture you will find in

the official RUP product. The vast

network of web pages does not give a

clear overview of the relationships

between the various UML models. Oh yes,

there is a lot of information, but it is

scattered around in artifact descriptions,

guidelines etc. This creates a lot of

confusion during projects: which UML

diagrams are we going to draw and how

are they interrelated? Figure 1. The RUP models and their dependencies.

Business Use
Case Model

Business
Analysis/Design Model

Use Case Model

Navigation Map Analysis Model

Design Model

Data Model Implementation
Model

Deployment
Model

Service Model

Business
Deployment Model

Hans Admiraal, 2007 - 2014 2 www.admiraalit.nl

RUP discerns four disciplines where UML is used:

– Business Modeling

– Requirements

– Analysis and Design

– Implementation

For each of these, I will summarize the view of RUP on UML modeling, the diagram types that can

be used, their meaning and the relationships between elements in different models. Apart from

that, I will give my personal opinion and suggestions about making practical decisions and dealing

with the weak spots of RUP.

BUSINESS MODELING

Not all software development requires business modeling, but for administrative applications, you

always need to know the business process to be supported. Large scale business modeling is

sometimes performed outside the context of a particular IT project, so that RUP does not play a

role. Too often, however, I am involved in software development projects where no proper

business models exist. In those cases, if RUP is adopted, business modeling is also done RUP-wise.

RUP defines four business models:

– The Business Use Case Model, which

describes the external interactions of

the organization in terms of business

use cases;

– The Business Analysis Model, which

shows how the organization behaves

internally to realize those interactions.

– The Business Design Model, which

refines the Business Analysis Model

with business details.

– The Business Deployment Model, which

defines the mapping of business

elements to geographical locations.

The dependencies shown in Figure 2 should be interpreted as references from one model to

another. The Business Analysis Model contains references to the business use cases, because it

Figure 2. The business models.

Business Use
Case Model

Business Analysis
Model

Business
Deployment Model

Business Design
Model

Hans Admiraal, 2007 - 2014 3 www.admiraalit.nl

provides an organization-internal realization of each business use case. The Business Design

Model refers to the analysis elements it refines. The Business Deployment Model adds locality

information to the business design elements.

Business Use Case Model

The business use cases specify the interaction between the organization, regarded as a black box,

and the outside world. The outside world consists of business actors, mostly customers and

suppliers. A business use case is described from the actor’s viewpoint. For business actor

‘Customer’, for instance, there might be a use case ‘Order a product’ and for ‘Supplier’ a use case

‘Supply materials’.

Table 1 shows the UML diagram types that can be used to create this model. Apart from UML,

business use cases and business actors are further described in regular text.

Package diagram Large models are divided in packages. A package diagram

provides an overview of these packages and their

interrelationships.

Use case diagram Shows the business use cases, the relationships among

them and their relationships with the business actors.

Activity diagram The flow of events during a business use case.

Table 1. Possible UML diagram types in the Business Use Case Model.

Business Analysis/Design Model

The internal functioning of the organization, meant to realize the business use cases, is the

subject of the Business Analysis Model and the Business Design Model. Here, the business

processes are decomposed and the work flow is revealed. You also model the organizational

structure and the flow of information, as far as relevant.

The Business Analysis Model usually evolves into the Business Design Model, making abstract

business elements more concrete and adding details about the communication between business

units. I will regard these models as one, from now on.

A variety of UML diagrams could be used to build this model.

Hans Admiraal, 2007 - 2014 4 www.admiraalit.nl

Package diagram An overview of the packages in the model.

Class diagram The structure of the organization and the information.

Business workers are active objects: employees, teams and

information systems. Passive objects like documents and

products are called business entities.

Activity diagram Work flow model, focusing on activities. Business workers

are diagram partitions, containing actions. Business entities

are the input and output of these actions.

Interaction diagram Work flow model, focusing on message exchange between

business workers.

State machine

diagram

The life cycle of a single business entity (states and state

transitions).

Table 2. Possible UML diagram types in the Business Analysis/Design Model.

As an alternative, RUP presents the domain model as a kind of light-weight business model. The

domain model only describes the business entities and their relationships and business rules.

Business Deployment Model

If the project’s scope includes several business locations, you may benefit from modeling this in a

business deployment model. The recommended representation is a deployment diagram, although

according to UML, this kind of diagram is meant to represent IT system topologies only.

RUP does not define links with models in other disciplines, but I would certainly draw connections

from services in the service model to the business nodes (the offices) where these services are

hosted.

What is really needed for small scale business modeling

Although RUP considers business modeling an optional activity, I would always at least make a

domain model. In such a model, I define the concepts from the user’s reality and draw them in a

class diagram. A business glossary adds a clear definition of each business class.

The domain model is an important terminology framework for the specification of use cases by

the requirements discipline. Don’t skip it!

One final remark about this example. I didn’t show any attributes or operations, but that does not

mean they are not there. On the contrary, some domain concepts can best be modeled as

attributes or operations, although business entities don’t have any operations: they are passive.

Hans Admiraal, 2007 - 2014 5 www.admiraalit.nl

More business analysis

If the application is supporting one or more business processes that are not well defined, you

should do more business modeling. You could make a Business Use Case Model, but I suggest you

just forget it. Instead, I replace it by a top-level activity diagram like Figure 4 in the Business

Analysis Model. This diagram shows one UML action stereotyped as «business process», for each

business process the application needs to support. By using the UML symbols accept event action

and send signal action, I show how the processes communicate with the world outside the

organization. The ‘Handle issue’ symbol covers the complete process of handling a call from a

customer, including anything that needs to be done to solve the issue.

Note the rake symbol in the bottom right corner. It indicates that the business process is

decomposed in a lower level activity diagram, as you can see in Figure 5. There is a partition for

each business worker that participates in the process.

Apart from the extra work required when you create business use cases, there may be business

processes that cannot be expressed at all as business use cases, in case they are entirely internal

Issue

Team member

Help desk member

Team

Employee

Customer

*

handled by

0..1

1..*

has member

1

*

registered by

1

1

raised

*

Figure 3. Class diagram showing business classes and their relationships.

Figure 4. Top-level activity diagram.

Receive

call

Call

back

«business process»

:Handle issue

Hans Admiraal, 2007 - 2014 6 www.admiraalit.nl

to the organization: ‘Check administration’, ‘Update web site’. Another pitfall is, that business use

cases should be named from the business actor’s viewpoint (‘Let the organization handle my

issue’), while business processes are usually named from the organization’s viewpoint (‘Handle

the customer’s issue’). This introduces a viewpoint shift when you compare the Business Use Case

Model with the Business Analysis Model.

Now, what about the interaction diagrams? Well, I think that activity diagrams are sufficient and

equiped to do all the process modeling. Interaction diagrams only add value if you define detailed

business unit interfaces by using so-called business operations (a new artifact in RUP version 7).

Creating state machines

Business entities that have a life cycle of going through particular states, get a state machine.

When an issue is registered, for example, it first waits to be examined by a help desk member. If

this person decides to forward it to a team, it enters the ‘Forwarded’ state, etc.

Help desk member Team leader Team member

Schedule issue

Try to help

customer

Solve issue

Answer customer

Receive

call

Examine issue

Call back

Authorize

solution

[case closed]

[answer directly]

[forward to team]

[follow-up required]

Figure 5. Second-level activity diagram.

Hans Admiraal, 2007 - 2014 7 www.admiraalit.nl

A state machine is often another view on the work flow and therefore creates some redundancy in

the Business Analysis Model. On the other hand, this second view brings a great opportunity to

check and enhance the activity diagrams. Furthermore, the states can be very useful to refer to in

the definition of business rules.

Business Modeling – Summary

Figure 7 shows the diagram types I use for business modeling, and their dependencies. They are

not created in a particular order, instead, they evolve simultaneously.

– The class diagrams form the domain model. They should always be there and that’s why

they have got this blue color.

– The activity diagrams are used when the application supports a particular work flow. From

these diagrams, you may refer to certain classes (business entities) in your class diagrams.

– State machine diagrams are used to model the life cycles of certain business entities.

Consequently, they depend on the class diagrams. The transitions are triggered by actions

of business workers, hence the dependency on the activity diagrams.

Figure 6. State machine diagram for business entity Issue.

To be examined

Answered

Forwarded

Scheduled

Solved

Authorized

return

refuse

reject

answer

authorize

solve

schedule

forward

answer

Hans Admiraal, 2007 - 2014 8 www.admiraalit.nl

– Other diagram types are rare in business modeling, so I left them out from the figure.

Large scale business modeling is usually not part of a RUP project.

REQUIREMENTS

The men and women of the requirements discipline use the business models to work out the

requirements for the application that should support that business. As far as UML is concerned,

the “only” thing we have to do is to create a Use Case Model. This model depends on two business

models, as shown in Figure 8. Although I ruthlessly unmasked the Business Use Case Model as a

pitfall, earlier in this paper, the figure shows what RUP tells you.

Use Case Model

This model is recommended for all RUP-projects. Basically, this model is shaped by iterating over

three main activities:

First, you describe the actors: who actually work with the system, in terms of user roles.

Then, the use cases themselves are identified: what do the actors want to achieve by using the

system? A use case diagram serves as an overview of these use cases (Figure 9).

Figure 7. Typical set of diagram types for business modeling (blue means essential).

Activity

diagrams

Class

diagrams

State machine

diagrams

Figure 8. The requirements discipline adds the Use Case Model.

Business Use
Case Model

Business
Analysis/Design Model

Use Case Model

Hans Admiraal, 2007 - 2014 9 www.admiraalit.nl

Finally, for each use case, the interaction between the actor and the system is specified. This is a

textual specification, which can be visualized in the form of an activity diagram (Figure 10).

Actors

The actors are often already identified in the Business Analysis Model as business workers. They

are the ones that need the system to do their jobs. The actors in Figure 9 were the business

workers I had casted in the domain model, remember? An actor could also correspond to a

business actor, in case the business actor can access the system directly, through the internet for

instance.

Figure 9. The use case diagram in the Use Case Model.

Issue Tracking Application

Help desk member

Register issue

Examine issue

Team leader

Team member

Handle

forwarded

issue

Authorize

solution

Handle

scheduled

issue

Find and view

issue

Handle

authorized

solution

«include»

«include»

«include»

«include»

Hans Admiraal, 2007 - 2014 10 www.admiraalit.nl

Use case identification

The use cases can be derived from the actions defined for the business workers in the activity

diagrams. This does not mean that there is a one-to-one correpondence, as you will notice when

you compare Figure 9 with the activity diagram in the Business Analysis Model (Figure 5). I

recommend documenting the relationships between the use cases and the work flow defined in

the business model.

Use case specification

Most RUP practitioners write use case specifications only as structured text. That can work very

well. It can also become a small disaster. How often did you renumber the steps in your flows?

How often did your alternative flows look like a bunch of snakes, biting each other’s tails? Those

of you who start smiling at this point, may benefit from the option to use activity diagrams to lay

down all alternative paths in a simple picture. Testers can greatly enjoy these pictures too, when

doing a test paths analysis.

include use case :

Find and view issue

E-mail to team

leader, sent

automatically

Forward issue

to team

Call customer and

make notes

Examine issue

Select team

using directory

{only issues in state 'To be examined'}

{state = Forwarded}{state = Answered}

[re-examine]

[answered with

satisfaction]

[forward to team]

[answer directly]

[forward to team]

Figure 10. An activity diagram showing the flow during use case ‘Examine issue’.

Hans Admiraal, 2007 - 2014 11 www.admiraalit.nl

Figure 10 shows the internals of use case ‘Examine issue’. The situation is, that a help desk

member takes an issue from the pool of issues that are in the state ‘To be examined’ in order to

either answer this issue immediately, or to forward it to the right team (second line help) for

further analysis. I hope you can interpret the flow without further explanation, but in practice,

when my diagrams have stabilized, I add a piece of text to my diagrams to help future readers.

Even more important is the specification per action. Each action in the diagram should be

specified either by text (maybe a one-liner, maybe a lot more), or by a separate diagram. I’m afraid

I’ll skip that for now. As you can see, the use case starts off with an included use case. The rake

symbol in the bottom right corner indicates that there is a separate activity diagram for this

action. Do you notice the references to my state machine in the business model?

Requirements – Summary

Altogether, the following UML diagram types may be found in a Use Case Model.

Package diagram Shows an overview of the packages, in case your system is

large enough to require separate use case packages.

Use case diagram Shows an overview of the use cases, their relationships and

their relationships with the actors.

Activity diagram A visualization of all possible flows of interaction between

actor and system during the use case.

Table 3. Possible UML diagram types in the Use Case Model.

The complete picture of UML diagram types so far, looks like this. The blue ones are mandatory in

my opinion, even for small systems.

Figure 11. UML diagram types for the business modeling and requirements disciplines.

Activ ity

diagrams

Class

diagrams

Use case

diagrams

Activ ity

diagrams

State machine

diagrams

Package

diagram

Requirements

Business modeling

Hans Admiraal, 2007 - 2014 12 www.admiraalit.nl

ANALYSIS AND DESIGN

Now, I will take you to the complex

discipline called “Analysis & Design”.

It adds six models to the set of

models produced by the business

modeling and requirements

disciplines: the Navigation Map, the

Analysis Model, the Service Model,

the Design Model, the Data Model and

the Deployment Model. The other

models gave us insight into the

business and the requirements, but

the six newcomers are models of the

actual software to be built. I will

discuss these models one by one.

Navigation Map

RUP defines the activity Design the

User Interface resulting in the

Navigation Map. This map is based on the use cases and shows the most important navigation

paths. A navigation path is a sequence of screens (windows, web pages) traversed by the user. How

does the map look like? In RUP, there are no rules, but a UML class diagram is mentioned as one of

Figure 12. The RUP models of the three disciplines

Business Use
Case Model

Business
Analysis/Design Model

Use Case Model

Navigation Map Analysis Model

Design Model

Data Model Deployment
Model

Service Model

Business
Deployment Model

Figure 13. Navigation Map.

Hans Admiraal, 2007 - 2014 13 www.admiraalit.nl

the options. I’d rather choose the state machine diagram. The active screen is considered to be the

state of the user interface and the transition arrows show the possible navigation paths. In Figure

13, I have drawn a very sober and incomplete state machine. It is missing the triggers that cause

the transitions and the actions taken by the system and it is missing exceptions. You may wonder

if the user is ever allowed to go back to the main screen. The answer is yes and I explicitly

mention in my user interface design document that the user can always traverse backwards,

although it’s not modeled in the map. The reason is that the map is not a formal, machine-

readable model, but an overview, meant to convey the user interface structure to humans. I do

display triggers and guards sometimes, but only if they are important to understand the map.

Some people may like to use the full power of UML to model navigation details. If I try that for

only two screens, I get something like Figure 14. I promise you very complex state machines if you

continue that way for the complete application. I usually write more formal and detailed

specifications too, screen by screen, but not using UML. These are important for implementers and

testers, but there is no RUP artifact for them. RUP does not even mention the navigation map as

input to any test or implementation activity! That’s a pity, because the tester and implementer

have to take all user interface design decisions into account.

The navigation map is optional in RUP. If you have a complete user interface prototype, you may

omit this model.

For large systems, the map can be very complex. According to RUP, you should put everything in

one diagram, but I would create at least one navigation map for each use case package.

Help desk main

screen

Search criteria

exit

Cancel

OK [criteria are invalid]

/display error

OK [criteria are valid] /search

search button pressed

Figure 14. Detailed map of some navigation paths.

Hans Admiraal, 2007 - 2014 14 www.admiraalit.nl

Analysis Model

The Analysis Model and the Design Model together reveal the system’s internals that realize the

use cases. The Analysis Model does this at a higher level of abstraction than the Design Model. The

analysis objects are still “logical” in their nature, while the elements of the Design Model are

directly recognizable in the source code. RUP allows you to go from use cases directly to the

Design Model, but if this step is too large, you can set up an Analysis Model first. It should be

decided per project whether the Analysis Model is replaced by the Design Model, or kept as a

conceptual overview of the Design Model. Both the Analysis Model and the Design Model contain

class diagrams to lay down the static structure and interaction diagrams that show the realization

of use cases in terms of co-operating objects.

Nowadays, I don’t make Analysis Models anymore. My Business Analysis Model and Use Case

Model together provide enough information to make a first draft component architecture in the

Design Model and to start making use case realizations in terms of interacting components.

The main problem with the classical RUP Analysis Model is, that it is not component-based or

service-oriented. It consists of a lot of analysis classes that send messages directly to one another,

without going through service or component interfaces. In my opinion, you should primarily

design the service model. At a lower level of detail, you design the component architecture per

service and how the service operations are realized in terms of component operations. Finally, you

design then each component’s internal classes and the realization of the component operations.

The second problem is, that analysis objects are logical and may not map very easily to the design

objects, despite RUP’s statement that the design objects are just a more detailed version of the

analysis objects.

So my advice is: Put all the relevant business entities and business processes in your Business

Analysis Model, then you don’t need an Analysis Model anymore.

Service Model

Traditionally, a software development project delivers an application that is either stand-alone or

connected to other, already existing applications. Nowadays, we should think service-oriented, i.e.

we live in a world of services, some within our company and some outside, and our project is

there to add new services and/or adapt some existing ones to achieve a business goal, while a thin

application layer provides the user interface. This implies that you need an IT architect, who can

oversee the enterprise’s IT needs as a whole, instead of only those within the project’s scope, and

who can identify services that may contribute to more flexibility in business and in IT. An

organization that really adopts SOA, should maintain an enterprise-wide Service Model.

Hans Admiraal, 2007 - 2014 15 www.admiraalit.nl

IssueTrackingApplication

«ServiceProvider»

CustomerData

CustomerService

«ServiceProvider»

EnterpriseDirectory

AuthorizationService

OrganizationServiceIModifyOrganization

ICustomers

ILookupRights

IGetOrganizationInfo

Within the scope of a single RUP project, a Service Model is meant to provide a picture of the

services landscape as far as is relevant for that project. Maybe we need to identify new services,

maybe we only need to connect to existing services. In the former case, the services should be

derived from the Business Analysis Model. In our Issue Tracking case, we could take the domain

model (Figure 3) and define a CustomerService for business entity Customer and an

OrganizationService for the business workers (employees and teams). The business entity Issue is

very application-specific and I don’t expect a need for an issue service. The two services we’ve

just identified are shown in Figure 15, which is a composite structure diagram. We have hosted

these services at service providers. The interface IModifyOrganization is not used, because our

application does not modify employee or team data; we leave that for another application. One

service is not derived from the business model, but from a supplementary requirement: the

AuthorizationService, which is used to lookup what the current user is allowed to do with our

application.

The Service Model is not yet complete. We need to define the operations available for each

interface. In UML, this could look like this:

The parameter types are classes with stereotype «message» and should be defined in another class

diagram. Figure 17 is an example of such a class diagram.

Figure 16. A service specification.

Figure 15. The main diagram of the Service Model.

Hans Admiraal, 2007 - 2014 16 www.admiraalit.nl

Customer

+ customerID: String

«message»

CustomerList

«message»

FindCustomer

«message»

InsertCustomer

CustomerAttributes

+ name: String

+ phoneNumber: String

+ email: String

1criteria

0..1

*

0..1

attributes

1

0..1

attributes 1

0..1

Typically, the following UML diagram types are found in the Service Model..

Package diagram RUP examples suggest to package the model elements per

element type (messages together, services together, etc.),

but I’d rather create a package per service.

Composite structure

diagram

Connections among services through interfaces.

Allocation of services to service providers.

Class diagram Service specifications and message definitions.

Sequence diagram Collaboration of services (messages exchanged over time).

State machine

diagram

Defines the protocol required by one particular service, i.e.

the possible orders in which its operations may be called.

Table 4. Possible UML diagram types in the Service Model.

RUP also mentions the option to define a use case model for each service, but I would not

recommend that. Use cases are more suited for describing user interactions.

Design Model

For most systems, analysis and design is performed on three levels:

– the service level, where applications and services and their collaboration are defined,

– the component level, at which the components of each application and service are defined,

– the object level, for the design of the components’ internals.

Figure 17. Message definitions in the Service Model.

Hans Admiraal, 2007 - 2014 17 www.admiraalit.nl

Small systems may lack the service level and in some cases, only the object level is needed.

The service level is captured in the Service Model, the other levels in the Design Model. At the top

level, the Design Model is divided into one package for each application and one for each service

that lies within the scope of the project. Within each package, I recommend to strictly separate the

component level from the object level. At both levels, the static structure is the basis on top of

which the dynamic behavior is modeled.

Design Model: Component Level

The static structure on the component level is represented mainly by two diagrams: a package

diagram (Figure 18) that depicts the layered approach and a set of component diagrams or

composite structure diagrams (Figure 19) showing which components use which interfaces of

other components.

It is confusing, that in RUP, a component is represented in the Design Model by an artifact called

“Design Subsystem”. The component level (as defined by one of the SOA guidelines) is called

system level elsewhere in the RUP material. In this white paper, we consistently use the words

component and component level.

Figure 18. Package diagram showing the layered architecture of IssueTrackingApplication.

Hans Admiraal, 2007 - 2014 18 www.admiraalit.nl

: IssueManager

: IssueClient

: IssueDB

: IssueProcess

«ServiceSpecification»

ICustomers

: CustomerManager«ServiceSpecification»

ILookupRights

«ServiceSpecification»

IGetOrganizationInfo

ICustomerManager

«ServiceChannel»

IViewIssues

IModifyIssues

IIssueProcess

«SQL»

«ServiceChannel»

«ServiceChannel»

Additionaly, as in the Service Model, we have to define the interfaces of the components, similar

to the service specifications (Figure 16) and the non-primitive parameter types, similar to the

message definitions (Figure 17). I’ve done both in Figure 20 for the interface IViewIssues.

Figure 19. Composite structure diagram for IssueTrackingApplication

Figure 20. A class diagram defining an interface and the types of its parameters.

Hans Admiraal, 2007 - 2014 19 www.admiraalit.nl

The dynamic part consists of use case realizations (UCR) in case of an application, or operation

realizations (OpR) in case of a service. A UCR or OpR consists of:

– an interaction diagram (sometimes two or three) – the most common kind of interaction

diagram is the sequence diagram;

– a class diagram to display the participating classes and their associations – this may help

the implementer if the application is too complex to oversee all of its components.

These diagrams stay on the component level, i.e. they do not show internal elements of any

component. Figure 21 is an example of a sequence diagram for the realization of use case “Find

and view issue”. The diagram of participating classes is not needed in our example.

If the component level design of the application or service is done, we have done an important

architectural job, crucial to the success of the project.

Design Model: Object Level

The internals of the components are far less important and may be left undesigned for simple

components. Still, most components are not so trivial and need modeling to be able to understand

the source code. At the object level, we encouter, again, a static and a dynamic part.

Figure 21. Sequence diagram: The realization of use case ‘Find and view issue’.

Hans Admiraal, 2007 - 2014 20 www.admiraalit.nl

The static part consists of class diagrams. The classes shown will be programmed to implement

the component.

The dynamic part is a collection of operation realizations. For each operation with a non-trivial

implementation, an interaction diagram (sequence diagram or communication diagram) is created.

Depending on the agility of the project and the skills of the implementers, you determine what

“non-trivial” means.

The user interface components are not triggered by operations, but by user-initiated events, like a

button that is being pressed. For those components, the dynamic part consists of interaction

diagrams that represent the reaction of the system to those events.

Figure 23 is a summary of the diagrams that are most valuable in the Service Model and the Design

Model. For more light-weight designs, I would recommend at least one composite structure

diagram or component diagram and for each component a class diagram (the blue elements). In

practice, you may want to deviate from this picture here and there. For example, some

components may also need a composite structure diagram at the object level and for complex

algorithms, you may benefit from activity diagrams at the object level.

Figure 22. Sequence diagram: The realization of operation ‘FindIssues’.

Hans Admiraal, 2007 - 2014 21 www.admiraalit.nl

Data Model

The last couple of models lay in a relatively safe corner of the

field of pitfalls. We can switch from careful steps to a final

sprint, if you don’t mind.

The Data Model is a model of the database. If an RDBMS is part

of the application, then the Data Model will specify the tables,

columns and foreign key relations, and usually also stored

procedures and triggers. These elements all fit in class

diagrams, using special stereotypes like «table» and «column».

When using multiple databases, each database should be shown

as a component in the Design Model.

Sometimes, the Data Model is divided in packages, for example

one for each database schema. A package diagram shows the dependencies.

Figure 23. Diagram types in the Service Model and the Design Model.

Figure 24. A database table.

Hans Admiraal, 2007 - 2014 22 www.admiraalit.nl

Deployment Model

The Deployment Model specifies the required hardware and network connections. Within that

framework, you allocate the software components to the machines on which they should be

installed. UML’s deployment diagram is meant to display this model.

IMPLEMENTATION

Implementation Model

The Implementation Model is only needed if the organization of the physical source code differs

from the package and component structure defined in the Design Model. In that case, the

Implementation Model specifies the source code structure (the directories, for example) and the

compilation order. If you like to visualize this, you can use a package diagram. The relationships

between these packages and the packages or components in the Design Model should be clear,

either by using a uniform naming convention or by explicit mapping.

Figure 25. Deployment diagram.

Hans Admiraal, 2007 - 2014 23 www.admiraalit.nl

GOOD LUCK USING UML IN RUP!

It is often difficult to arrange the development process such, that a clear set of models is

produced, taking the preferences and skills of the various team members into account. The RUP

documentation is too fragmented. In this paper, I tried to bring the fragments together, mixed up

with my own experiences. Did it help you? You and your team will have to sit together and find

your own way. Remember, RUP is always too big. Create only those models that add value. I’m

very interested to hear your comments and questions!

Hans Admiraal, (freelance IT architect and RUP trainer)

admiraal aol.nl

www.admiraalit.nl

